
Information technology advances have
equipped the U.S. military with an

extraordinary arsenal of weaponry and
supporting materiel. To keep the arsenal
current, the Department of Defense
(DoD) modified its acquisition strategy
to reflect the iterative nature of informa-
tion technology (IT) development. Both
public- and private-sector large-scale
software-intensive acquisitions use itera-
tive strategies to conduct the try-before-you-
buy testing of these purchases. This arti-
cle briefly reviews literature on software
testing and describes an iterative test
strategy used in an actual large-scale mil-
itary software acquisition.

The Timing of Software
Testing
In the past, a series of increasingly strin-
gent development tests controlled quality
and guided DoD large-scale customized
IT acquisitions through the procurement
process. Right before acquisition fielding,
an operationally realistic test evaluated
the product’s functional effectiveness
within its intended environment [1].
Thus, multimillion-dollar purchase deci-
sions depended largely upon successful
operational tests at the end of produc-
tion.

In the United States in 2002, the
National Institute of Standards and
Technology calculated the annual cost of
these operational test failures in the U.S.
public and private sectors at $59.5 billion
[2]. An independent study found that
more than half of IT acquisitions dou-
bled their initial budget and schedule pro-
jections, the average acquisition provided
only 61 percent of the desired function-
ality, and one-third of software-intensive

projects were ultimately cancelled [3].
In IT acquisitions, the desired soft-

ware end-product is seldom clearly
defined [4]. The identification of require-
ments and the development of the soft-
ware to fulfill them are progressive and
often become intertwined, fueling a spiral
in which unanticipated requirements
emerge [5]. Government agencies have
referred to this process as evolutionary
acquisition and spiral development. Their
civilian counterparts use the phrases agile
development and extreme programming [6].

In the recent past, government testing
was insensitive to this process of soft-
ware development. In 2000, the U.S.
General Accounting Office (GAO)
harshly criticized DoD evaluation
methodologies and concluded that late
operational test failures consistently
plagued DoD purchases, particularly
software-intensive systems [7].
Accordingly, the GAO denounced the
traditional practice of employing testing
as a watershed event in sole support of field-
ing decisions. The failure of traditional
practices combined with the technologi-
cal revolution led directly to the develop-
ment of alternative test strategies, includ-
ing the method described in this article.

After studying government and pri-
vate practices, the GAO concluded that
the most effective method of exposing
deficiencies was iterative operational test-
ing. GAO further recommended the phi-
losophy developed by AT&T: Break it big
early [7]. According to AT&T, the earlier a
problem is discovered, the easier and less
expensive it is to fix, making software
development more cost-effective. Other
benefits include encouraging technologi-
cal exploration and advancement, con-
trolling risk [8], exposing unanticipated

requirements, and enabling their eventual
fulfillment.

Spurred by success, incremental test-
ing has become the industry standard for
software development projects. For
example, during the acquisition of the
Theater Battle Management Core System,
evaluators successfully mitigated risk by
operationally testing each basic system
component prior to fielding. The test
team also observed that the incremental
strategy facilitated requirements develop-
ment as operators became increasingly
familiar with the system [9]. The DoD
employed the strategy with several pro-
grams, significantly improving its acquisi-
tion and testing practices.

In addition to incremental testing,
there is also near unanimous agreement
about using operationally realistic testing
early in the development cycle. Past and
present DoD Operational Test Agency
leaders assert that early operational tests
streamline the production process,
improve requirements definition, and
provide valuable feedback [10, 11]. The
Global Command and Control System
test team, one of the first DoD programs
to effectively use it, found that early oper-
ational testing increased operator system
familiarity, which, in turn, increased the
number of deficiencies exposed during
testing [12].

In March 2002, the Giga Information
Group estimated that two-thirds of pri-
vate-sector software projects would
employ agile development within the next
two years. Using terms nearly identical to
those in the government lexicon, the
group identified these projects as those
that are divided into smaller phases and
require more frequent testing [6].
According to the prevailing opinion in

A Correlated Strategic Guide for Software Testing

Dr. Santa Falcone
University of New Mexico

Due to the complexity of software development, completed programs are rarely ever flawless. Instead, they exist in a state of
constant refinement. As a result, large-scale customized software programs are routinely purchased and employed while still
experiencing significant problems. Because of the programs’ scale, these problems cost public- and private-sector organizations
billions of dollars each year in productivity losses and repair expenses. In the study in this article, test and field data from a
large-scale software development project were analyzed using Chi-square goodness-of-fit tests, p-tests, and binary logit regres-
sion. The results of this series of calculations support using initial test deficiencies in mid-production software tests to guide
later iterative testing to increase deficiency exposure. When used during software development, this strategic test guide is expect-
ed to improve testing, expose problems earlier, help lead to higher quality end-products, and ultimately reduce the large losses
organizations experience due to customized software defects.

18 CROSSTALK The Journal of Defense Software Engineering July 2005

Christopher L. Harlow
The George Washington University Law School

A Correlated Strategic Guide for Software Testing

July 2005 www.stsc.hill.af.mil 19

the public and private sectors, the best
response to the challenges of IT testing
is incremental operationally oriented
evaluations beginning in the early stages
of system development.

Early and Continuous
Software Testing
While the community has unanimously
embraced the need for earlier testing,
there is no consensus on how to conduct
early testing. Experts have proposed
merging developmental and operational
tests, instituting sustained independent
operational testing, using Bayesian hierar-
chical models [13], and replacing opera-
tional testing with mathematical models.
In addition, some argue that those who
will actually operate the completed sys-
tem should be active observers during
early developmental tests [3].

Ideally, involving primary users in
early testing expedites identification, pri-
oritization, and resolution of exposed
deficiencies, and results in lower costs
due to reduced operational testing [4].
This modified early testing with primary
users still culminates in a final operational
test. Thus, while using operators as
testers and separating large-scale soft-
ware acquisitions into incremental seg-
ments conform to the new paradigm, this
modified testing also retains the tradi-
tional concept of a final operational test
of the whole system.

Several experts eschew the implicit
requirement for physical testing and sug-
gest the utilization of risk assessment
models. Thompson proposes four strate-
gies ranging from the traditional produc-
tion model to various levels of opera-
tionally realistic testing, determined by a
variety of statistical inputs [14].
Expanding on Thompson’s proposal,
Arnold’s mathematical model would
effectively eliminate the need for detailed
testing of specific aspects of a potential
acquisition, ostensibly saving substantial
resources [15]. While the substitution of
mathematical modeling for testing is not
entirely accepted within the community,
proponents of mathematical modeling
assert that accurate models can be built.
Systematic refinement of mathematical
models is anticipated to improve their
predictive abilities [16].

The model or strategy proposed in
this article employs Thompson’s idea of
using statistical data in testing. However,
the use of statistical data here will identi-
fy specific test activities, not just test lev-
els. It also will provide a guide for the
iterative incremental testing process

rather than an outright replacement of
test activities.

Testing Using Correlation
The DoD commissioned a study in May
2000 to evaluate the accuracy of opera-
tional tests by comparing test results of
11 systems to wartime field data [17]. The
limitations of this study were as follows:
Low-level task-based test data was com-
pared with strategic-level operational
data; a standardized deficiency tracking
method before and after fielding was not
used; all 11 systems had been significant-
ly altered after testing and many of the
modifications were not documented; and,
finally, there was an extremely high
turnover rate of test personnel. Turnover
is not isolated to the military: Civilian test
teams often encounter turnover rates as
high as 80 percent in test periods only a
few months in length [18]. To credibly
compare data from one iterative test to
another, the identification of test and
field deficiencies should be standardized
and the only substantive system changes
should be fixes to deficiencies exposed
during official testing.

The closest approximation to this
article’s correlation model was the incre-
mental development and testing of IBM’s
integrated results database for the 2000
Summer Olympics. IBM utilized standard
Orthogonal Defect Classification to cate-
gorize system defects along an x-y graph,
revealing defect similarities and trends
the IBM team termed triggers. The IBM
team assumed that a high trigger inci-
dence rate revealed an area of weak code
and “used the insight to guide test teams
toward more effective defect discovery”
[18]. The IBM trigger metrics represent
an initial attempt by the software industry
to relate test data to future performance
in a manner aimed at improving the pro-
duction process.

As noted earlier, the specific require-
ments of large-scale software programs
are unclear at the inception of the design
and production process. The correlation
of iterative test results is proposed here
to enable discovery, more specific clarifi-
cation, and fulfill end-user needs during
production and testing. This approach
also helps manage the eight factors that
influence success or failure during soft-
ware testing: production, infrastructure,
training, personnel, communications,
operations, maintenance, and environ-
ment [1].

Regarding the first factor, production,
according to software production expert
M.S. Phadke, faulty coding tends to be
regional and hence predictable [19].

Regional, as it is used here, refers to
either a section of the code or a physical
location where the code is generated. As
per Phadke’s observation, there will be
regions of computer code that are highly
correlated with deficiencies in the initial
stages of design and production (prior to
the first test). These regions should be
more closely observed in the first test for
the specific types of deficiencies identi-
fied during production. Any region with a
large number of deficiencies during the
first test would then be targeted for
emphasis in the next production cycle
and for extensive testing during the sec-
ond test. Comparing by region the defi-
ciencies exposed during the first test to
those exposed during the second test
would again target the regions that
should receive more emphasis in the fol-
lowing production cycle and extensive
testing during the third test, and so on,
iteratively encouraging the optimal identi-
fication of unexposed deficiencies.

Comparing this approach to IBM’s,
the triggers identify only the regions of
code with problems. They do not indicate
the relative significance of the difference
between the regions and do not track the
eight factors. In this approach, data about
the eight factors was collected during two
tests of a large-scale software program.
This enabled analysis of the deficiencies
exposed and each of the eight factors.
This analysis identified the regions of
code that were problematic, the differ-
ence between regions, and which of the
eight factors were significantly related to
the exposed deficiencies.

Methodology
The data for this study came from two
tests (TEST1 and FIELD) of the large-
scale software program Deliberate and
Crisis Action Planning and Execution
System (DCAPES), designed to serve an
information technology need of the U.S.
Air Force [20]. For TEST1, operator
information and the results of the testing
of 53 tasks within the first increment of
DCAPES were collected from five world-
wide locations during two weeks in June
of 2001. The 53 specific tasks were
organized into the following six cate-
gories: operations, logistics, information
analysis, reference file access, manpower
data management, and system adminis-
tration [20]. Fifty-two operators assessed
the system’s capabilities and performance
in 4,592 discrete actions in a simulated
operational environment. Data collected
in TEST1 included the overall recording
of the outcomes of the test, deficiency
documentation, operator information,

and operator satisfaction surveys.
The first increment of DCAPES was

then fielded in March 2002. FIELD, the
second data collection effort, involved
recording deficiencies that were found in
the normal operation of the first incre-
ment of DCAPES after it was fielded.
Normal operations consisted of an esti-
mated 225,000 discrete actions by
approximately 2,000 authorized opera-
tors in 16 worldwide locations over a 10-
month period. Data collected in FIELD
included deficiency documentation and
operator information.

Performance failures or deficiencies
were documented using the exact same
procedures and codes for both TEST1
and FIELD. Operators documented defi-
ciencies with standardized forms exten-
sively describing the problem and the cir-
cumstances leading to its exposure. While
documenting the problem, the operator
assigned a priority describing the impact
of the deficiency on the organization’s
mission on a five-point numeric scale. A
priority one deficiency described a cata-
strophic mission failure, while a priority
five described an easily circumvented
minor inconvenience.

After the operator assigned an initial
priority, a Deficiency Review Board
(DRB) convened to review the legitimacy
of the problem and the appropriateness
of the assigned priority. The DRB con-
sisted of representatives from the soft-
ware developer company, the operating
community, and an independent govern-
ment evaluator as chairman ensuring
impartial review. TEST1 and FIELD
both followed these same procedures,
utilizing identical definitions and DRB
members. This replication ensured com-
parable treatment of test and field defi-
ciencies. The DRB also rejected duplicate
deficiencies, ensuring each problem was
documented only once. After the DRB
assigned a final priority, the problem was
officially documented in another data-
base that consolidated and segregated
test and field deficiencies, making this
information readily available to author-
ized personnel.

A series of χ2 goodness-of-fit tests, p-
tests, and binary logistic regression equa-
tions were conducted on the data collect-
ed to answer the problem statement,
“Can the correlation of software test and field
data be used to guide testing to increase deficien-
cy exposure?” The analyses are organized
and discussed in three sections: system
functionality, organizational trends, and
operator data. System functionality refers
to the performance of the DCAPES sys-
tem. Organizational trends refer to how

organizations impact the performance of
the DCAPES system. Operator data
refers to how operators impact the per-
formance of the DCAPES system.

Findings
Regarding system functionality, this study
began with the assumption that coding
errors tend to be regional. One implica-
tion of this assumption is that defects are
interrelated and may be predictable.
Analysis of the results of the testing of
the 53 system tasks within the six func-
tional categories supports this assump-
tion. The data indicates that tasks and cat-
egories with high execution quantities had
more field deficiencies. These tasks and
categories were more complex, containing
a broader range of functions made possi-
ble through additional lines of code. Due
to this complexity, these areas were more
susceptible to errors. The binary logistic
regression results also indicate a signifi-
cant relationship between the execution
volume of complex code and incidence of
errors. Applying this finding, a test direc-
tor could increase the testing of regions
with high volume execution.

Another affirmation of the regionali-
ty of errors was evident in that regions of
code plagued by failures during the first
test exhibited additional defects in the
field test. The time and resource con-
straints placed on testing prohibit expo-
sure of every deficiency in any single
round of testing. As a result, it is not sur-
prising that defects remain undiscovered
even in areas well tested in previous iter-
ations. Again, a test director could alter
test activities to emphasize regions with
substantial failures in past tests.

An organization-wide trend that had
significant impact was the adequacy of
training provided to operators. The find-
ings indicate that the categories in which
operators had inadequate training had
higher field deficiency quantities.
Intuitively, this results from the inability
of operators to stringently test these cat-
egories in the first test. This study found
that DCAPES training problems were
more related to the categories of tasks
than the geographic location of the task
execution. This provides valuable infor-
mation because training courses are typi-
cally organized along both lines with cat-
egory specialists trained as a group at
each location.

To improve a test in progress before
its completion, the awareness that opera-
tors have inadequate training in specific
categories should be used to redirect test-
ing to emphasize the reported categories
using only well-trained operators.

However, in an incremental development
project, this feedback concerning cate-
gories in which operators are reporting
significant training problems could be
provided to instructors and the training
adjusted to prevent inadequate training
from negatively impacting later tests.

The operator data identified signifi-
cant factors to guide the testing process
and factors that are not as important as
conventional wisdom suggests. For
example, prevailing opinion is that defect
exposure detracts from test execution. A
variety of calculations revealed that the
expected negative relationship between
execution and deficiency submission did
not occur. Instead, the significant rela-
tionship in this regard was that operators
who submitted false deficiencies (false
deficiencies are those withdrawn by the
submitter or rejected by the DRB)
exposed significantly fewer legitimate
defects overall. This calls into question
the quality of testing accomplished by
these operators and suggests the partici-
pation of operators who submit false
deficiencies in past tests should be cur-
tailed in future tests.

Current conventional wisdom also
asserts that test planning should entail
the meticulous creation of a simulated
environment that closely approximates
the operational setting. The findings of
this study, however, indicate that some
facets of this environment may not be
necessary to simulate so meticulously.
For example, significant resources are
devoted to recruiting representative
operators; however, the findings here
were that field deficiency exposure rates
increase with operator skill level and sys-
tem experience. Using operators in the
testing process with great skill level and
system experience apparently would be a
more effective and efficient way to
expose deficiencies than ensuring that
operators representing the full available
range of skill levels participate in the test.

Finally, tasks with lower operator sat-
isfaction levels were found to contain
unexposed deficiencies. These operator
satisfaction results provide information
about system performance that can be
used to guide testing. Within the time
period of one test, operators often rotate
in and out. Using this to advantage, a test
director could steer subsequent testing
toward areas receiving lower marks on
satisfaction ratings of operators rotating
out. In a spiral development effort, test
directors could also schedule later tests
to emphasize areas receiving lower oper-
ator satisfaction ratings in previous itera-
tions.

20 CROSSTALK The Journal of Defense Software Engineering July 2005

Configuration Management and Test

Conclusion
The statistical analysis within this study
has specific application to the remaining
tests in the development of DCAPES and
the development of similar large-scale sys-
tems. Through publishing this article,
information about the approach suggest-
ed here will be incorporated into the body
of information about software testing.
Then, as the methods here are more wide-
ly employed, they will refine testing and
help improve end-product quality.

As mentioned earlier, the National
Institute of Standards and Technology
estimates software defects cost the United
States nearly $60 billion annually. The
Institute also estimates that practical
approaches to software development and
testing could reduce this figure by 37 per-
cent [2]. Essentially, $20 billion can be
saved each year through the implementa-
tion of relatively simple software produc-
tion models. The correlation model pro-
posed in this article is an initial attempt at
capturing a small percentage of these
funds. While not the most statistically ele-
gant method, it is a method that most pro-
fessionals in the work world will be able to
understand and, most importantly, use.
Public- and private-sector large-scale soft-
ware development projects may both real-
ize tremendous gains from a statistical
correlation model.

The data analysis referred to in this
article is available upon request.u

References
1. McGowen, D.J. “C4I Operational Test

and Evaluation in Support of
Evolutionary Acquisition Strategy.”
ITEA Journal of Test and Evaluation
21.2 (2000): 34-39.

2. RTI. “Planning Report 02-3: The
Economic Impacts of Inadequate
Infrastructure for Software Testing.”
Washington, D.C.: National Institute of
Standards and Technology, May 2002
<www.nist.gov/director/prog-ofc/
report 02-3.pdf>.

3. Maybury, M., A. King, and J. Brooks.
“Software Intensive System Acquisi-
tion – Best Practices.” 2003 Acqui-
sition Conference, 28-30 Jan. 2003,
Arlington, VA <www.sei.cmu.edu/
products/events/acquisition/2003
-presentations/maybury.pdf>.

4. Assi, S., and M. Thompson.
“Alternative Test and Evaluation
Strategies for Command and Control
Systems.” ITEA Journal of Test and
Evaluation 20.2 (1999): 21-25.

5. Axiotis, G. “Evolutionary Acquisition
and Operational Testing, Time for a

New Approach.” Evolution 99 (1999):
1-5.

6. Sliwa, C. “Users Warm Up to Agile
Programming.” Computerworld 18
Mar. 2002 <www.computerworld.
com>.

7. General Accounting Office. “Best
Practices: A More Constructive Test
Approach Is Key to Better Weapon
System Outcomes.” Washington: GAO,
July 2000.

8. Cast, M. “Military Links Developmen-
tal and Operational Testing to Meet
Technology Challenges of the 21st
Century.” Program Manager July-Aug.
2000: 16-18.

9. Zyroll, T., A. Johnson, and B. Connally.
“Government Testing Philosophy
Redefined for Theater Battle Manage-
ment Core Systems.” ITEA Journal of
Test and Evaluation 19.1: 25-47.

10. Whittmeyer, J. “Meet DoD’s Top
Advisor on Operational Test and
Evaluation.” Program Manager May-
June, 1996: 2-8.

11. Besal, R.E., and S.K. Whitehead.
“Operational Testing: Redefining
Industry Role.” National Defense
Magazine Sept. 2001 <www.national
defensemagazine.org/archives.htm>.

12. Bailey, M., and M. Spencer. “Engineer-
ing the Largest C4I Operational Test in
Naval History.” ITEA Journal of Test
and Evaluation 20.1 (1999): 26-33.

13. Graves, T. “Hierarchical Models for
Software Testing and Reliability
Modeling.” 2003 Quality and Produc-

tivity Research Conference, IBM T.J.
Watson Research Ctr., Yorktown
Heights, N.Y., May 21-23, 2003.

14. Thompson, M., and E. Montagne.
“Using Risk Assessments to Determine
the Scope of Operational Tests for
Software-Intensive System Incre-
ments.” ITEA Journal of Test and
Evaluation 19.1 (Jan. 1988): 42-47.

15. Arnold, A.G., and W.F. Kujawa. “Test
and Evaluation of Complex System of
Systems.” ITEA Journal of Test and
Evaluation 20.3 (Mar. 1999): 33-36.

16. O’Bryon, J.F. “Meet MASTER-
Modeling and Simulation Test and
Evaluation Reform. ITEA Journal of
Test and Evaluation 20.4 (Apr.1999).

17. Brown, S.O., and K.E. Murphy. “Air
War Over Bosnia: OT&E Impact on
USAF Systems Used Over Serbia.”
Kirtland Air Force Base, NM: Air Force
Operational and Test Evaluation
Center, 2000.

18. Bassin, K, and S. Biyani.. “Metrics to
Evaluate Vendor-Developed Software-
Based on Test Case Execution Results.”
IBM Systems Journal 41.1 (2002): 13-30
<www.research.ibm.com/journal>.

19. Phadke, M.S. “Planning Efficient
Software Tests.” CrossTalk Oct.
1997 <www.stsc.hill.af.mil/crosstalk/
1997/10/index.html>.

20. Harlow, C. “DCAPES Operational
Assessment Final Report.” Kirtland
Air Force Base, NM: Air Force Oper-
ational and Test Evaluation Center,
2001.

July 2005 www.stsc.hill.af.mil 21

A Correlated Strategic Guide for Software Testing

About the Authors

Christopher L. Harlow
currently attends The
George Washington
University Law School.
Previously, he was a test
manager for three years

at the Air Force Operational Test and
Evaluation Center in New Mexico
where he designed and executed world-
wide operational tests of The
Deliberate Crisis Action Planning and
Execution System. Harlow has a
Bachelor of Science in economics
from the U.S. Air Force Academy and a
Master of Public Administration from
the University of New Mexico.

The George Washington
University Law School
E-mail: charlow@law.gwu.edu

Santa Falcone, Ph.D.,
is an associate profes-
sor in the School of
Public Administration
at the University of
New Mexico and

teaches public budgeting and public
finance.

University of New Mexico
2085 Anderson School of
Management
Albuquerque, NM 87131
Phone: (505) 277-4934
Fax: (505) 277-7108
E-mail: falcone@unm.edu

